# **LANSCE User Group Meeting**

Accelerator Operations & Technology: Performance & Proposed Schedule

November 2, 2015

Bob Garnett, AOT-DO



LA-UR-15-28406

UNCLASSIFIED

Slide 1



## **Overview of the LANSCE Accelerator & Beam Delivery Complex Serving Multi-Beam Operations**





# LRM had significant impact, but we will still make investments to fully realize the operational improvements.



LINAC Risk Mitigation investments were designed to:

- Refurbish the 201 MHz and 805 MHz RF systems to regain reliable RF power system operation
- Restore sustainable 120 Hz linac operation
- Implement a modern, maintainable EPICS-based control system
- Refurbish beam transport and front-end injector systems (RFQs)

New 201-MHz RF System (Diacrode-based system)



Elements were de-scoped from LANSCE-R/LRM and remain to be addressed by future project priorities.

UNCLASSIFIED

Slide 3



# Linac Risk Mitigation has made significant investments in upgrades and improvements at LANSCE.

- FY14 Accomplishments
  - Installed new high-power diacrode amplifier in Module 2
  - Procured Module 4 high-power amplifier components 4 for installation in FY15
  - Installed new computer controlled water cooling systems on Module 2
  - Significant building electrical upgrades in Sector A
  - Installed new RICE and industrial controls systems in Sector A and in the 805 linac
  - Facility improvements to support new Low-Level Radio Frequency control systems throughout the 201-MHz Drift-Tube Linac and parts of the 805 linac
- FY15 Accomplishments
  - Completed Sector-A facility electrical upgrades
  - Completed high-power diacrode amplifier in Module 4
  - Procured high-power amplifier components for Module 3 to be installed in FY 2016



UNCLASSIFIED





# **201-MHz, High-Power Amplifier installed on DTL Module 2** in FY14







Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED



#### New computer controlled water cooling system installed on DTL Module 2 in FY14





UNCLASSIFIED

Slide 6



#### **DTL Module 4 LRM Diacrode Amplifier installation in FY15**





Operated by Los Alamos National Security, LLC for NNSA





NNS

Slide 7

UNCLASSIFIED

### CW injectors will eventually be replaced with RFQ accelerators.





# **Operational improvements to beam delivery performance and to enhance capabilities are on-going.**

- Feschenko Bunch Length Monitor allows measurement of beam longitudinal phase space; improved linac beam tuning; installation expected CY16
- Real-Time Simulator goal is to use fast desktop GPU computing to model and control accelerator performance in realtime; prototype being benchmarked now
- Improving H<sup>-</sup> Source Performance higher peak output current; extending source lifetime
- Improved H<sup>-</sup> Chopper Rise Time and Phase Control improves beam to WNR, pRad, and Lujan
- H<sup>-</sup> Debuncher decouples two-beam bunching and capture; could improve peak current to WNR and pRad by up to 50%
- **PSR/1L Target Options** pulse stacking, moderator modifications for fast neutrons
- Revitalization of Beam Delivery to Area A multiple beam



applications

UNCLASSIFIED

Slide 9





Longer-Term

**Near-Term** 

### **\$5.2M Office of Science investment in IPF Accelerator** Improvement Project – Goals / Deliverables

| Summary of Key and Ultimate Performance Parameters. |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Focus area                                          | Key Performance Parameters                                                                                                                                                                               | Ultimate Performance Parameters                                                                                                                                                                                                                  |  |  |  |  |
| Beam Window                                         | Capable of <b>operation</b><br><b>up to 300</b> $\mu$ <b>A</b> with new temperature<br>and/or window deflection indications.                                                                             | Capable of operation up to 450 $\mu A$ with new temperature and window deflection indications.                                                                                                                                                   |  |  |  |  |
| Active and Adjustable collimator                    | New design with four electrically<br>isolated sectors for beam spill<br>monitoring and with active cooling for<br>thermal management.                                                                    | Active and Adjustable Collimator with an aperture of 1.4" to 2.3" that accommodates target sizes between 1.5-2.5 inches based upon present beam window design. Capable of handling high intensity beam spills – additional guard ring as backup. |  |  |  |  |
| Beam Raster                                         | Provide <b>selectable circle raster patterns</b> with one, two or three circles each.                                                                                                                    | New system is capable of generating alternate raster types (e.g. spiral) including concentric circle patterns containing up to 100 circles.                                                                                                      |  |  |  |  |
| Beam Profile<br>Monitor/Emittance<br>Measurement    | Capable of profiling unrastered beams<br>near target bulk shielding with<br>1 mm or better resolution; capability to<br>measure beam emittance in beamline<br>section following final IPF dipole IPBM01. | Additional capability of real-time monitoring of low average-power rastered beams.                                                                                                                                                               |  |  |  |  |
| Beam Current<br>Measurement                         | Measurements with 1%<br>accuracy or better over a range from<br>100 nA to 500 μA.                                                                                                                        | Additional capability of near real time (second time scale) beam current monitoring with 5% accuracy or better at low beam currents.                                                                                                             |  |  |  |  |
| Beam Energy Monitoring                              | <b>Real-time energy monitoring</b> for<br>100-MeV beam with a resolution of 50<br>keV.                                                                                                                   | Additional real-time energy monitoring for 41- and 72-MeV beams with a resolution of 50 keV.                                                                                                                                                     |  |  |  |  |



UNCLASSIFIED

Slide 10



#### What's driving the FY16 to FY20 budget request? The 5 year to MaRIE plan

- FY10 through FY14, the integrated LANSCE facility had stable operations and LRM funding at ~\$77M/yr.
- In FY15, with the completion of Phase 1 of LRM, the LRM budget was reduced 50%. In addition, the M&O budget was reduced 4.3%. Effective allocation was \$63.6M.
- LANSCE accommodated these cuts in FY15 by:
  - Reducing scheduled operations by 10% effectively reduced available pRad time by 25%
  - Effectively halted LRM work except for 201-MHz Module 4 RF replacement and Module 3 procurement + limited IC&D procurements
- The FY16 budget enables a return to historical on-call posture, returning the 10% cut to the Users.



Stable FY16 thru FY20 operations are important considerations as we position ourselves for MaRIE.

UNCLASSIFIED





# We have developed a five-year operations plan with a transition to MaRIE with defined decision points.

Total yearly burdened operation costs (RTBF-equivalent) of \$75M (FY16)

- Drives linac at 120 Hz with beam delivery to the present 6 targets.
- No procurement or construction of a new 1L target that decision should be evaluated within 2 years.
- Continues critical investments in Linac infrastructure to maintain facility research availability and to prepare the proton linac for MaRIE.
  - > 201-MHz power amplifier work is completed in FY16 (Module 3)
  - Includes \$3M in sustainability investments in Linac including critical spares
- Maintains accelerator operations expertise and infrastructure until needed for MaRIE construction (CD-2 activities begin in FY21)
- Phases LANSCE operations budget with MaRIE construction "heavy-lift" (\$200M) in FY21



UNCLASSIFIED





# Additional critical investments will be required to sustain operations and maintain high availability.

### **Critical Spares**

- Module 2-4 Diacrode Systems Spares
- Vacuum Ion Pump Arrays
- Modulator Decks
- Beam Position Monitors
- Magnet Power Supplies

## Sustainability and Availability

- High-Voltage IVR Rebuilds
- Wire Scanners
- Rice to EPICS Controls Conversion
- LLRF Controls Replacement
- DTL Tank-1 Water System Upgrade
- Module 1 7835 System Spares

Includes significant work scope impacted by loss of LRM funding.



UNCLASSIFIED



#### LANSCE Complex Integrated Hours and Reliability (2005-2015)



# Reliable beam was delivered to all LANSCE experimental areas in FY15.

| Area  | Delivery Dates                                                                    | Scheduled                  | Delivered                 | Reliability |     |
|-------|-----------------------------------------------------------------------------------|----------------------------|---------------------------|-------------|-----|
| IPF   | 01/07/201408:00<br>02/03/201408:00<br>&<br>10/11/201416:00<br>12/22/201408:00     | 110553 min.<br>(1842 hrs.) | 97165 min.<br>(1619 hrs.) | 87.9%       | Sur |
| Lujan | 01/07/2014 08:00<br>02/05/2014 08:00<br>&<br>10/19/2014 08:00<br>12/22/2014 08:00 | 100224 min.<br>(1670 hrs.) | 80430 min.<br>(1340 hrs.) | 80.2%       |     |
| pRad  | 01/07/2014 08:00<br>02/04/2014 17:00<br>&<br>10/12/2014 07:00<br>12/20/2014 17:00 | 22068 min.<br>(368 hrs.)   | 17877 min.<br>(298 hrs.)  | 81.0%       |     |
| UCN   | 01/07/201416:00<br>02/04/201408:00<br>&<br>10/16/201400:00<br>12/22/201408:00     | 59752 min.<br>(996 hrs.)   | 55379 min.<br>(890 hrs.)  | 89.3%       |     |
| WNRT2 | 01/28/2014 16:00<br>02/04/2014 08:00<br>&<br>12/20/2014 08:00<br>12/22/2014 16:00 | 10163 min.<br>(169 hrs.)   | 8934 min.<br>(149 hrs.)   | 87.9%       |     |
| WNRT4 | 01/07/201408:00<br>01/17/201416:00<br>&<br>10/19/201416:00                        | 71051 min.<br>(1184 hrs.)  | 48527 min.<br>(809 hrs.)  | 68.3%       |     |

#### CY 2014 Beam Reliability Summary

**Reliability Goals:** 

- Lujan 80%
- WNR 80%-85% (Programs)
- IPF, pRad, UCN on-demand; expected high

#### CY 2015 Beam Reliability Summary

(Jan-Feb, Oct-Present)

| Area   | Reliability |  |  |
|--------|-------------|--|--|
| IPF    | 89.1%       |  |  |
| Lujan  | 76.8%       |  |  |
| pRad   | 90.8%       |  |  |
| UCN    | 83.4%       |  |  |
| WNR T2 | N/A         |  |  |
| WNR T4 | 79.1%       |  |  |

NATIONAL LABORATORY



# Careful system evaluation and accounting of downtime was used to prioritize risk mitigation focus.

Unreliable, end-of-life, and obsolete systems were identified:

- RF systems
- DTL water system
- Controls
- Linac diagnostics
- DTL drift tubes
- Front-end injector systems

Significant progress has been made but continued investments are needed to ensure sustainable and reliable operations.



S Alamos

UNCLASSIFIED

Slide 16



#### CY 2015/2016 LUF Operating Block Schedule v 3.0





#### Proposed CY 2015-19 LUF Run Schedules as we come out of the 201-MHz Diacrode upgrades:



Long Range LANSCE Operating Schedule

Operated by Los Alamos National Security, LLC for NNSA

LOS





- Overall LANSCE accelerator operational reliability remains high.
- The LANSCE Linac Risk Mitigation strategy was to ensure the continued long-term reliability and availability of the LANSCE accelerator.
- The FY16 to FY20 budget request is designed to ensure appropriate funding for sustainable operations.
- Continued investments need to be made to sustain reliable operations for the long-term (5 years to MaRIE).
- Reliable future LANSCE operation is critical to the success of MaRIE as a multi-probe dynamic test facility.



UNCLASSIFIED

Slide 19

